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 In this paper we present the alternated Julia sets, obtained by alternated 

iteration of two maps of the quadratic family 2
1 ,  1,2n n iz z c i     and prove 

analytically and computationally that these sets can be connected, disconnected or  

totally disconnected verifying the known Fatou-Julia theorem in the case of  

polynomials of degree greater than two. A few examples are presented. 
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1. Introduction 

 The evolution of a natural process can be modeled by using discrete dynamical 

systems, that is to say, maps which apply one point to another point of certain variables 

space. Note that in Nature there are many different interactions and therefore systems do 

not evolve according to a unique dynamics. Therefore, it is reasonable to think that the 

evolution of a natural process should be explained by the alternated iteration of different 

dynamics. Let us assume, to simplify, that we have only two different discrete dynamics 

1D  and 2D , corresponding to seasonal variations in the model of the natural process. In 

this case we can study the out-coming dynamics D by combination of the dynamics 1D  

and 2D , i.e., D: 1 2 1
0 1 2 3

D D Dx x x x    , where { 0 1 2, , ,x x x } are the values 

of the variable x describing the physical system [1]. 

 In this paper we will study the alternated iteration of pairs of maps of the 

complex quadratic family 2
1 ,  1, 2n n iz z c i     by means of its Julia sets. The alternated 

iteration of two real logistics maps was firstly studied in [2] using computer tools as 

histograms and surrogate tests. Moreover, the synthesis of hyperbolic attractors of 
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continuous dynamical systems by switching the control parameter, in a regular 

deterministic manner, was obtained in [3]. 

  As is known, the filled Julia set of a complex polynomial :P    is 

 | ( )nK z P z    where nP  denotes the thn  iteration of P. The Julia set of P is 

J K  , i.e. what you get when you remove the inside of the filled Julia set, leaving 

only its boundary part. As is also known, J is connected if and only if K is connected 

and, therefore, J and K have the same connectivity properties.  

 As is also known, the connectivity properties of the Julia set for a polynomial of 

degree 2d   have an intimate relationship with the dynamical properties of its finite 

critical points. In 1918-1919 Fatou [4] and Julia [5] proved a result what is known as the 

Fatou-Julia theorem: 

 

 (i) The Julia set is connected if and only if all the critical orbits are bounded. 

 (ii) The Julia set is totally disconnected, a Cantor set1, if (but not only if) all the 

critical orbits are unbounded. 

 In 1992, Branner and Hubbard [7] stated a conjecture that was proved by Qiu 

and Yin in 2006 [8]. Hence it completes the Fatou-Julia theorem as follows: 

 (iii) For a polynomial with at least one critical orbit unbounded, the Julia set is 

totally disconnected if and only if all the bounded critical orbits are aperiodic.  

  

 The parts (i) and (ii) of the theorem treat the two extreme cases where either all 

the critical points or none of the critical points have bounded orbits. In between [9-11], 

if one or more critical orbits are unbounded and one or more critical orbits are bounded, 

the Julia set is either disconnected or totally disconnected according to part (iii). A 

disconnected Julia set consists of infinitely many pieces, some of which may be points, 

but others are connected sets that are not points. 

 We briefly recall a well known result for the quadratic polynomial 

2( )cP z z c  . Each map cP  has a single critical point at 0 and a single critical orbit. 

                                                 
1 A Cantor set is defined as a compact, perfect, totally disconnected subset in  . Any such set is 
homeomorphic to the middle-third Cantor set and therefore deserves the name a Cantor set. Since any 
Julia set is compact and perfect it follows that a given Julia set is a Cantor set if and only if it is totally 
disconnected [6]. 
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The fate of this orbit leads to the fundamental dichotomy for quadratic polynomials [12, 

13] that is the Fatou-Julia theorem for degree 2d  : 

 

 (i) The Julia set of cP  is connected if the orbit of 0 is bounded.  

 (ii) The Julia set of cP  is totally disconnected if the orbit of 0 is unbounded. 

  

 The set of parameter values c for which the Julia set of cP  is connected forms 

the well known Mandelbrot set. 

 Even though the Julia set of a map of the quadratic family 2
1n nz z c    can be 

either connected or totally disconnected, in this paper we will show that the Julia set of 

the alternated iteration of two maps of the quadratic family can be connected, totally 

disconnected and also disconnected. 

 

2. Alternated Julia sets 

 Let us consider the family of quadratic maps 2
1:  c n nP z z c   . We introduce the 

alternated filled Julia set 
1 2c cK  as being the set of points of the complex plane whose 

orbits are bounded when we iterate the alternated system  
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and, in the same manner, we introduce the alternated filled Julia set 
2 1c cK  as being the 

set of points of the complex plane whose orbits are bounded when we iterate the 

alternated system 
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 The odd and even iterates of 
1 2c cP  respond to the general expressions 

 

  
2 2 2 2 2 2

2 1 0 1 2 1 1 2 1
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        ,     (2. 3) 
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and 

  
2 2 2 2 2 2

2 0 1 2 1 2 1 2

2 1

  ((...((( ) ) ) ) )i

i

z z c c c c c c


        ,       (2. 4) 

 

where 0z  is the initial value and 1,2,3i   . We have 2
2 2 1 2i iz z c   and 2

2 1 2 1i iz z c   . 

 

Proposition 2.1 

(i) If 2iz  is bounded, 2 1iz   is also bounded.  

(ii) If 2iz  is unbounded, 2 1iz   is also unbounded. 

PROOF. If 2iz  is bounded it is obvious that 2 1 2 2i iz z c    is also bounded. If 2iz  is 

unbounded it is obvious that 2
2 1 2 1i iz z c    is also unbounded.   

 

 Because the study of the connectivity of the Julia sets of 
1 2c cP  is a difficult task, 

we introduce the auxiliary complex quartic polynomial 
1 2c cQ  

 

    
1 2

2 2
1 1 2:  ( )c c n nQ z z c c 
    .       (2. 5) 

 

The iterates of 
1 2c cQ  respond to the general expression 

 

  
2 2 2 2 2 2
0 1 2 1 2 1 2

2 1

((...((( ) ) ) ) )i

i

z z c c c c c c



        ,    (2. 6) 

 

where 0z  is the initial value and 1,2,3i   .  

 

Theorem 2.1 

The (un)boundedness of 
1 2

{ }n
c cQ implies the (un)boundedness of 

1 2
{ }n

c cP . 

PROOF. Equations (2. 4) and (2. 6) show that *
2i iz z . Let’s next consider the orbits of 

1 2c cP  and 
1 2c cQ  for the same initial value 0z . Taking into account proposition 2.1, if the 

orbit of 
1 2c cQ  is bounded the orbit of 

1 2c cP  is also bounded; if the orbit of 
1 2c cQ  is 

unbounded, the orbit of 
1 2c cP  is also unbounded.   
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Therefore we can enunciate the following main theorem 

 

Theorem 2.2 

The Julia set of the alternated system 
1 2c cP  and the Julia set of the quartic system 

1 2c cQ  

are the same for given 1c  and 2c  parameter values.  

 

3. Examples 

 Figure 1 shows the Julia set of the quadratic map  2
1 0.76 0.1n nz z i     . As is 

well known, this Julia set is totally disconnected because 0.76 0.1i   does not belong 

to the Mandelbrot set. However, the alternated Julia sets 
1 2c cK  when 2 0.76 0.1c i    

and 1c  takes different values in the neighborhood of 2c  can be connected, disconnected 

and totally disconnected. 

 In this section, according to Theorem 2.2, we verify graphically that the 

connectivity properties of the Julia sets of 
1 2c cQ  are transferred to the alternated Julia 

sets of 
1 2c cP .  

 
3.1. Connectivity zones 

 The quartic polynomial 
1 2c cQ  has three critical points, 0, 1c  and 1c  , but 

the orbits of 1c   are the same, except in the initial point, because of the parity of 

1 2c cQ . According to the Fatou-Julia theorem, there are three possibilities about the orbits 

of the critical points of 
1 2c cQ : 

(i) The orbits of 0 and 1c   are bounded. Then, the alternated Julia set 
1 2c cK  is 

connected. 

(ii) The orbits of 0 and 1c   are unbounded. Then, the alternated Julia set 
1 2c cK  is 

totally disconnected. 

(iii) The orbit of 0 is bounded and the orbits of 1c   are unbounded, or the orbit of 0 

is unbounded and the orbits of 1c   are bounded. Then, the alternated Julia set 

1 2c cK  is disconnected if the bounded critical orbits are periodic and it is totally 

disconnected if the bounded critical orbits are aperiodic. 
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 For a given parameter value 2c  it is possible to find, by means of a computer 

program, the connectivity zones of 1c  in the neighborhood of 2c  that origin connected, 

disconnected and totally disconnected alternated filled Julia sets 
1 2c cK . For example, in 

Fig. 2a the connectivity zones for 
1 2c cK  when 2 0.76 0.1c i   , the real part of 1c  is in 

the interval  0.77,  0.75   and the imaginary part of 1c  is in the interval  0.09,  0.11 , 

are drawn. Firstly, for each pixel of the figure the corresponding parameter value 1c  is 

determined. Secondly, the orbits of the critical points 0 and 1c   of 
1 2c cQ  are tested to 

see if they are bounded or not. Finally, the color of the pixel is assigned (black if all the 

orbits are bounded, grey if there are both bounded and unbounded orbits, and white if 

all the orbits are unbounded).   

 Figure 2b is a magnification of the square a of Fig. 2a with 2 0.76 0.1c i   . 

The real part of 1c  is in the interval  0.766,  0.759   and the imaginary part of 1c  is in 

the interval  0.099 ,  0.106i i . We have selected six representative points in the 

connectivity zones. The points A  1 0.76 0.1c i    and B  1 0.762 0.102c i   , in the 

white zone, must correspond to totally disconnected alternated Julia sets. The points 

C  1 0.7628 0.1028c i    and E  1 0.764 0.104c i   , in the grey zone, must 

correspond to disconnected alternated Julia sets. The point 

D  1 0.763181 0.103171c i    is near the boundary of the grey/white zones. The point 

F  1 0.765 0.105c i   , in the black zone, must correspond to a connected alternated 

Julia set. 

 

3.2. Critical orbits 

 Figure 3 shows in detail the orbits of the critical points 0 and 1c   of 
1 2c cQ  

corresponding to the points A, B, C, D, E and F of Fig. 2b (as we have said, the orbits of 

the two critical points 1c   are the same except in the initial point). Note that the 

second point of the orbits of 1c 
 
is 2c . 

 In Figs. 3a and 3b, corresponding to points A and B of Fig. 2b, all the critical 

orbits are unbounded. 
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 In Fig. 3c, corresponding to point C of Fig. 2b, the orbits of the two critical 

points 1c   are unbounded but the orbit of critical point 0 is period-15 periodic. Note 

that the point C is inside a disc of the disconnected zone (Fig. 2b), not in the main body 

of this zone. 

  The point D of Fig. 2b is near the boundary between the grey and white zones (it 

is impossible, with a finite precision computer program, to determine a 1c  value in this 

boundary). In Fig. 3d, corresponding to point D, the orbits of the two critical points  

1c   are unbounded but the orbit of the critical point 0 is bounded. This critical orbit 

is non periodic. In the figure, the orbit contains 10,000 points and seems to be an 

aperiodic one. Taking into account the Banner-Hubbard conjecture, the corresponding 

alternated Julia set must be totally disconnected. 

 In Fig. 3e, corresponding to point E of Fig. 2b, the orbits of the two critical 

points 1c   are unbounded, but the orbit of 0 is period-1 periodic. Note that point E is 

in the main body of the grey zone of Fig. 2b. 

 Finally, in Fig. 3f, corresponding to point F of Fig. 2b, all the critical orbits are 

period-1 periodic. 

 

3.3. Drawing alternated Julia sets 

 In Fig. 4 three examples of alternated filled Julia sets 
1 2c cK  (on the left) and 

2 1c cK  

(on the right) are shown when 2 0.76 0.1c i    and 1c  is in the neighborhood of 2c  

(compare with Fig. 1). The critical points of polynomial 
1 2c cQ are also shown. The totally 

disconnected alternated Julia sets of Fig. 4a correspond to point B  1 0.762 0.102c i    

of Fig. 2b, the disconnected alternated Julia sets of Fig. 4b correspond to point 

C  1 0.7628 0.1028c i    of Fig. 2b, and the connected alternated Julia sets of Fig. 4c 

correspond to point F  0.765 0.105i   of Fig. 2b. 

 The alternated Julia sets 
1 2c cK  and 

2 1c cK  show a flashy graphical alternation. For 

example, in Fig. 4a, we can see the graphical alternation of the alternated Julia sets 

1 2
:c cK aba b   (on the left) and 

2 1
:c cK bab a   (on the right).  
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4. Conclusions 

 In this paper we introduce the alternated Julia sets corresponding to the 

alternated iteration of two complex quadratic polynomials. We present, analytically and 

using computer graphics, which the alternated Julia sets can be connected, disconnected 

and totally disconnected, verifying the Fatou-Julia theorem in the case of complex 

polynomials of degree greater than two. Moreover, these alternated Julia sets exhibit 

graphical alternation.  
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Figure 4 
 
Figure captions 
 
Fig. 1. Totally disconnected Julia set of 2

1n nz z c    when 0.76 0.1c i   . 

 

Fig. 2. Connectivity zones of the system 2
1 1n nz z c    (n even), 2

1 2n nz z c    (n odd) 

when 2 0.76 0.1c i    and 1c  is in the neighborhood of 2c . The black, grey and white 

zones correspond to connected, disconnected and totally disconnected alternated filled 

Julia sets 
1 2,c cK . a) The side of the window is 0.02. b) Magnification of the square a     

of (a). 

 

Fig. 3. Orbits of the critical points 0 and 1c   of polynomial 
1 2c cQ  corresponding to 

the points A (a), B (b), C (c), D (d), E (e) and F (f) of Fig. 2b. 
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Fig. 4. Examples of alternated filled Julia sets 
1 2c cK  (on the left) and 

2 1c cK  (on the right) 

showing the critical points of polynomial 
1 2c cQ . (a) Totally disconnected Julia set (point 

B of Fig. 2b). (b) Disconnected Julia set (point C of Fig. 2b). (c) Connected Julia set 

(point F of Fig. 2b). 

 

 

 


